11.08.2008

Cara Membuat Wajanbolic

Tutorial singkat pembuatan "Antena Wajanbolic 2.4 Ghz "

Di Milis, forum ataupun anda searching menggunakan google atau mesin pencari lainnya yang bertebaran banyak sekali di internet hanya dengan memasukan keywords yang anda inginkan untuk mengetahui informasinya khususnya tentang pembuatan Antena Wajanbolic 2.4 Ghz yang bisa dipakai untuk peralatan Hardware USB WIFI ataupun WIFI UTP , pada tutorial ini mungkin anda sudah tidak asing lagi dari semua pembahasan dan sekian banyak informasi yang dimiliki tapi tidak ada salahnya saya sedikit menambahkan tentang tutorial singkat pembahasan pembuatan antena tersebut yang banyak sekali saya alami dalam kesedihan, duka, dan suka, oke dech langsung aja kali ngga usah kebanyakan omong===kekekekekkk..:

yang perlu anda miliki anda sekarang mungkin :
1. USB WIFI D-LINK G122 ( itu yang saya pakai,yang lainnya juga bisa ).
2. Wajan penggorengan terserah mau ukurannya berapa mau yang gede mau yang kecil juga bisa sesuai selera anda aje...
3. Baut + Mur + Ring + yang agak panjangan dikit ( kira2 10 cm diameternya 1 cm <===biar agak kuatan dikit...:smile:).
4. Klem antena TV yang modelnya setengah lingkaran ( sesuai ama pipa yang buat tangkringan Wajan penggorengan ).
5. Bor Listrik kalau ada kalau ngga ada ya... usaha dikit dech ..pinjem kek ama temen atau ke tukang bubut mesin p:)
6. Konektor USB WIFI ( buat nambahin biar lebih panjang kabelnya kira2 sampai 10 meter lebih ).
7. Kabel UTP pastinya yang bagus gw pakai Belden <=== itu aja dapet dikasih temen gw, kekekekekkk.
8. Pipa plastik ukuran 1 1/4 Inchi ( sesuaikan ama Rumus yang dibawah yeh...)
9. Kaleng bekas ( bekas apaan kek or mulung dikit jg gpp daripada harus beli )
10. Lem perekat buat ngelem pipa plastiknya biar ngga kemasukan air hujan )
11. Tutup pipa 1 1/4 Inchi juga == 2Ea/ buah.
12. Selamat mencoba aja dech...P:)( ntr kalo bingung email aja key...)

dari kebutuhan diatas mungkin teman2 bisa mengganti atau ngga harus sama ama kebutuhan yang saya cantumin diatas, kreatifitas anda ketrampilan anda juga sangat mendukung dalam meminimalisir kebutuhan biaya.


RUMUS nya nech..:

f = D^2 / (16*d)



itu Rumusnya n gw dah nyoba berhasil koq asal perhitungan ama prakteknya sesuai.

kalo dah jadi seperti ini nech...



untuk gambar2 yang lain bisa klik disini

CATATAN PENTING :

Antenna Wireless Wajan Bolic ini hanya berjalan di frekwensi 2.4 Ghz
Fungsi dari Antenna Wireless Wajan Bolic ini adalah sebagai peralatan komunikasi Internet
di sisi Client (CPE = Customer Premises Equipment) yg murah meriah.
Dalam penggunannya Antenna Wireless Wajan Bolic ini harus di arah kan ke Access Point (AP).
Biasanya yg memiliki peralatan Access Point (AP) adalah penyelengara jasa koneksi internet seperti:
WISP (Wireless Internet Service Provider) atau
RTRWNet (Wireless Internet di lingkungan RT/RW sekitar tempat tinggal anda) atau
HOTSPOT di Kampus, Mall, Sekolah, Bandara dll.
Ingat sebelum anda membeli perangkat Antenna Wireless Wajan Bolic ini,
pastikan di tempat anda harus sudah ada penyelengara jasa koneksi internet (WISP/RTRWnet/HOTSPOT).
Dan dengan Antenna Wireless Wajan Bolic ini
"TIDAK MENJAMIN ANDA DAPAT MENIKMATI KONEKSI INTERNET SECARA GRATIS!".
Jadi anda harus mengeluarkan biaya extra untuk dapat ber Internet dengan Antenna Wireless Wajan Bolic ini.
Biaya Internet sangat berfariasi tergantung dari penyelengara jasa koneksi internet seperti tersebut di atas.
Kisaran biaya internet adalah antara Rp. 150.000,- s/d Rp. 350.000,- per bulan.
Untuk mencari informasi apakah di tempat anda sudah terdapat WISP atau RTRWNet,
silahkan tengok URL ini http://forum.rtrw.net/viewforum.php?f=8
http://forum.wajanbolic.web.id
http://maman2.wajanbolic.web.id

Nirkabel

Jaringan lokal nirkabel atau WLAN adalah suatu jaringan area lokal nirkabel yang menggunakan gelombang radio sebagai media tranmisinya: link terakhir yang digunakan adalah nirkabel, untuk memberi sebuah koneksi jaringan ke seluruh pengguna dalam area sekitar. Area dapat berjarak dari ruangan tunggal ke seluruh kampus. Tulang punggung jaringan biasanya menggunakan kable, dengan satu atau lebih titik akses jaringan menyambungkan pengguna nirkabel ke jaringan berkabel.

LAN nirkabel adalah suatu jaringan nirkabel yang menggunakan frekuensi radio untuk komunikasi antara perangkat komputer dan akhirnya titik akses yang merupakan dasar dari transiver radio dua arah yang tipikalnya bekerja di bandwith 2,4 GHz (802.11b, 802.11g) atau 5 GHz (802.11a). Kebanyakan peralatan mempunyai kualifikasi Wi-Fi, IEEE 802.11b atau akomodasi IEEE 802.11g dan menawarkan beberapa level keamanan seperti WEP dan atau WPA.




Sejarah

WLAN diharapkan berlanjut menjadi sebuah bentuk penting dari sambungan di banyak area bisnis. Pasar diharapkan tumbuh sebagai manfaat dari WLAN diketahui. Frost & Sullivan mengestimasikan pasar WLAN akan menjadi 0,3 miiyar dollar AS dalam 1998 dan 1,6 milyar dollar di 2005. Sejauh ini WLAN sudah di-install in universitas-universitas, bandara-bandara, dan tempat umum besar lainnya. Penurunan biaya dari peralatan WLAN jugahas membawanya ke rumah-rumah. Namun, di Inggris UK biaya sangat tinggi dari penggunaan sambungan seperti itu di publik sejauh ini dibatasi untuk penggunaan di tempat tunggu kelas bisnis bandara, dll. Pasar masa depan yang luas diramalkan akan pulih, kantor perusahaan dan area pusat dari kota utama. Kota New York telah memulai sebuah pilot program untuk menyelimuti seluruh distrik kota dengan internet nirkabel. Perangkat WLAN aslinya sangat mahal yang hanya digunakan untuk alternatif LAN kabel di tempat dimana pengkabelan sangat sulit dilakukan atau tidak memungkinkan. Seperti tempat yang sudah dilindungi lama atau ruang kelas, meskipun jarak tertutup dari 802.11b (tipikalnya 30 kaki.) batas dari itu menggunakan untuk gedung kecil. Komponen WLAN sangat cukup mudah untuk digunakan di rumah, dengan banyak di set-up sehingga satu PC (PC orang tua, misalnya) dapat digunakan untuk share sambungan internet dengan seluruh anggota keluarga (pada saat yang sama tetap kontrol akses berada di PC orang tua). Pengembangan utama meliputi solusi spesifik industri and protokol proprietary, tetapi pada akhirn 1990-an digantikan dengan standar, versi jenis utama dari IEEE 802.11 (Wi-Fi) (lihat artikel terpisah) dan HomeRF (2 Mbit/s, disarankan untuk rumah, antahberantahdi Inggris ). Sebuah alternatif ATM-seperti teknologi standar 5 GHz, HIPERLAN, sejauh ini tidak berhasil di pasaran, dan dengan dirilisnya yang lebih cepat 54 Mbit/s 802.11a (5 GHz) dan standar 802.11g (2.4 GHz), hampir pasti tidak mungkin.

Kekurangan

Masalah kurangnya keamanan dari hubungan nirkabel telah menjadi topik perdebatan. Sistem keamanan yang digunakan oleh WLAN awalnya adalah WEP, tetapi protokol ini hanya menyediakan keamanan yang minimum dikarenakan kekurangannya yang serius. Pilihan lainnya adalah WPA, SSL, SSH, dan enkripsi piranti lunak lainnya.

Keamanan

Pada jaringan kabel, satu dapat sering, pada beberapa derajat, akses tutup ke jaringan secara fisik. Jarak geografi dari jaringan nirkabel akan secara signifikan lebih besar lebih sering daripada kantor atau rumah yang dilingkupi; tetangga atau pelanggar arbritrary mungkin akan dapat mencium seluruh lalu lintas dan and mendapat akses non-otoritas sumber jaringan internal sebagaimana internet, secara mungkin mengirim spam or melakukan kegiatan illegal menggunakan IP address pemilik, jika keamanan tidak dibuat secara serius.

Beberapa advocate akan melihat seluruh titik akses tersedia secara terbuka available untuk umum, dengan dasar bahwa semua orang akan mendapat manfaat dari mendapat ketika berlalu lintas online.

Mode dari operation

Peer-to-peer atau mode ad-hoc Mode ini adalah metode dari perangkat nirkabel untuk secara langsung mengkomunikasikan dengan satu dan lainnya. Operasi di mode ad-hoc memolehkan perangkat nirkabel dengan jarak satu sama lain untuk melihat dan berkomunikasi dalam bentuk peer-to-peer tanpa melibatkan titik akses pusat. mesh Ini secara tipikal digunakan oleh dua PC untuk menghubungkan diri, sehingga yang lain dapat berbagi koneksi Internet sebagai contoh, sebagaimana untuk jaringan nirkabel. Jika kamu mempunyai pengukur kekuatan untuk sinyal masuk dari seluruh perangkat ad-hoc pegukur akan tidak dapat membaca kekuatan tersebut secara akuratr, dan dapat misleading, karena kekuatan berregistrasi ke sinyal terkuat, seperti computer terdekat.

Titik Akses / Klient

Paling umum adalah titik akses melalui kabel ke internet, dan kemudian menghubungi klien nirkabel (tipikalnya laptops) memasuki Internet melalui titik akses. Hampir seluruh komputer dengan kartu nirkabel dan koneksi kabel ke internet dapat di-set up sebagai Titik Akses, tetapi sekarang ini satu dapat membeli kotak bersangkutan dengan murah. Kotak-kotak ini biasanya berbentuk seperti hub atau router dengan antena, jembatan jaringan nirkabel atau jaringan ethernet kabel. Administrasi dari titik akses (sepeti setting SSID, memasang enkrypsi, dll) biasanya digunakan melalui antarmuka web atau telnet. Jaringan rumah tipikalnya mempunyai sebuah akses stand-alone tersambung kabel misalnya melalui koneksi ADSL, sementara hotspots dan jaringan profesional (misalnya menyediakan tutup nirkabel dalam gedung perkantoran) tipikalnya akan mempunyai titik akses banyak, ditempatkan di titik strategis.

Sistem Distribusi Nirkabel

Ketika sulit mendapat titik terkabel, hal itu juga mungkin untuk memasang titik akses sebagai repeater.

Stasiun Pengamatan

Beberapa kartu jaringan nirkabel dapat diset up untuk to memonitor sebuah jaringan dengan menghubungkan ke titik akses atau berkomunikasi sendiri. Hal ini dapat digunakan untuk membersihkan penciuman-activitas teks, atau to enkripsi crack.

Pertanyaan Serat Optik Dan Penyambungan

1. Apa yang dimaksud Serat Optik :
Serat optik adalah saluran transmisi yang terbuat dari kaca atau plastik yang digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain.

2. Bagaimana Prosedir penyambungan sert optik :
1. Penyambungan kabel serat optik harus sesuai prosedur
2. Penggunaan material dan peralatan harus benar
3. Pemasangan sarana sambung kecil kabel harus sesuai petunjuk pelaksanaan
4. Pengetesan harus dilakukan sesuai penyambungan
Serat Optik

Serat optik adalah saluran transmisi yang terbuat dari kaca atau plastik yang digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Cahaya yang ada di dalam serat optik sulit keluar karena indeks bias dari kaca lebih besar daripada indeks bias dari udara. Sumber cahaya yang digunakan adalah laser karena laser mempunyai spektrum yang sangat sempit. Kecepatan transmisi serat optik sangat tinggi sehingga sangat bagus digunakan sebagai saluran komunikasi.
Serat optik umumnya digunakan dalam sistem telekomunikasi serta dalam pencahayaan, sensor, dan optik pencitraan.
Serat optik terdiri dari 2 bagian, yaitu cladding dan core.
Cladding adalah selubung dari core.Cladding mempunyai indek bias lebih rendah dari pada core akan memantulkan kembali cahaya yang mengarah keluar dari core kembali kedalam core lagi.
Efisiensi dari serat optik ditentukan oleh kemurnian dari bahan penyusun gelas. Semakin murni bahan gelas, semakin sedikit cahaya yang diserap oleh serat optik.

Pembagian Serat optik dapat dilihat dari 2 macam perbedaan :
1. Berdasarkan Mode yang dirambatkan :
Single mode : serat optik dengan core yang sangat kecil, diameter mendekati panjang gelombang sehingga cahaya yang masuk ke dalamnya tidak terpantul-pantul ke dinding cladding.
Multi mode : serat optik dengan diameter core yang agak besar yang membuat laser di dalamnya akan terpantul-pantul di dinding cladding yang dapat menyebabkan berkurangnya bandwidth dari serat optik jenis ini.
2. Berdasarkan indeks bias core :
Step indeks : pada serat optik step indeks, core memiliki indeks bias yang homogen.
Graded indeks : indeks bias core semakin mendekat ke arah cladding semakin kecil. Jadi pada graded indeks, pusat core memiliki nilai indeks bias yang paling besar. Serat graded indeks memungkinkan untuk membawa bandwidth yang lebih besar, karena pelebaran pulsa yang terjadi dapat diminimalkan.

Bagian-bagian serat optik jenis single mode

Bagian-bagian serat optik jenis single mode
Reliabilitas dari serat optik dapat ditentukan dengan satuan BER (Bit Error Rate). Salah satu ujung serat optik diberi masukan data tertentu dan ujung yang lain mengolah data itu. Dengan intensitas laser yang rendah dan dengan panjang serat mencapai beberapa km, maka akan menghasilkan kesalahan. Jumlah kesalahan persatuan waktu tersebut dinamakan BER. Dengan diketahuinya BER maka, Jumlah kesalahan pada serat optik yang sama dengan panjang yang berbeda dapat diperkirakan besarnya.

Sejarah perkembangan
Penggunaan cahaya sebagai pembawa informasi sebenarnya sudah banyak digunakan sejak zaman dahulu, baru sekitar tahun 1930-an para ilmuwan Jerman mengawali eksperimen untuk mentransmisikan cahaya melalui bahan yang bernama serat optik. Percobaan ini juga masih tergolong cukup primitif karena hasil yang dicapai tidak bisa langsung dimanfaatkan, namun harus melalui perkembangan dan penyempurnaan lebih lanjut lagi. Perkembangan selanjutnya adalah ketika para ilmuawan Inggris pada tahun 1958 mengusulkan prototipe serat optik yang sampai sekarang dipakai yaitu yang terdiri atas gelas inti yang dibungkus oleh gelas lainnya. Sekitar awal tahun 1960-an perubahan fantastis terjadi di Asia yaitu ketika para ilmuwan Jepang berhasil membuat jenis serat optik yang mampu mentransmisikan gambar.

Di lain pihak para ilmuwan selain mencoba untuk memandu cahaya melewati gelas (serat optik) namun juga mencoba untuk ”menjinakkan” cahaya. Kerja keras itupun berhasil ketika sekitar 1959 laser ditemukan. Laser beroperasi pada daerah frekuensi tampak sekitar 1014 Hertz-15 Hertz atau ratusan ribu kali frekuensi gelombang mikro.
Pada awalnya peralatan penghasil sinar laser masih serba besar dan merepotkan. Selain tidak efisien, ia baru dapat berfungsi pada suhu sangat rendah. Laser juga belum terpancar lurus. Pada kondisi cahaya sangat cerah pun, pancarannya gampang meliuk-liuk mengikuti kepadatan atmosfer. Waktu itu, sebuah pancaran laser dalam jarak 1 km, bisa tiba di tujuan akhir pada banyak titik dengan simpangan jarak hingga hitungan meter.

Sekitar tahun 60-an ditemukan serat optik yang kemurniannya sangat tinggi, kurang dari 1 bagian dalam sejuta. Dalam bahasa sehari-hari artinya serat yang sangat bening dan tidak menghantar listrik ini sedemikian murninya, sehingga konon, seandainya air laut itu semurni serat optik, dengan pencahayaan cukup kita dapat menonton lalu-lalangnya penghuni dasar Samudera Pasifik.

Seperti halnya laser, serat optik pun harus melalui tahap-tahap pengembangan awal. Sebagaimana medium transmisi cahaya, ia sangat tidak efisien. Hingga tahun 1968 atau berselang dua tahun setelah serat optik pertama kali diramalkan akan menjadi pemandu cahaya, tingkat atenuasi (kehilangan)-nya masih 20 dB/km. Melalui pengembangan dalam teknologi material, serat optik mengalami pemurnian, dehidran dan lain-lain. Secara perlahan tapi pasti atenuasinya mencapai tingkat di bawah 1 dB/km.

Tahun 80-an, bendera lomba industri serat optik benar-benar sudah berkibar. Nama-nama besar di dunia pengembangan serat optik bermunculan. Charles K. Kao diakui dunia sebagai salah seorang perintis utama. Dari Jepang muncul Yasuharu Suematsu. Raksasa-raksasa elektronik macam ITT atau STL jelas punya banyak sekali peranan dalam mendalami riset-riset serat optik.

2. Time Line Pengembangan Fiber Optik

1917 Theory of stimulated emission Albert Einstein mengajukanm sebuah teori tentang emisi terangsang dimana jika ada atom dalam tingkatan energi tinggi 1954 "Maser" developed Charles Townes, James Gordon, dan Herbert Zeiger di Columbia University mengembangkankan "maser" yaitu microwave amplification by stimulated emission of radiation, dimana molekul dari gas amonia memperkuat dan menghasilkan gelombang. . Pekerjaan ini menghabiskan waktu tiga tahun sejak ide Townes pada tahun 1951 untuk mengambil manfaat dari osilasi frekuensi tinggi molekular untuk membangkitkan gelombang dengan penjang gelombang pendek pada gelombang radio. 1958 Pengenalan Konsep Laser Townes dan ahli fisika Arthur Schawlow mempublikasikan paper yang menunjukan bahwa maser dapat dibuat untuk dioperasikan pada daerah infra merah dan optik. .Paper ini menjelaskan tentang konsep laser (light amplification by stimulated emission of radiation)


1960 ditemukannya Continuously operating helium-neon gas laser Laboratorium Riset Bell dan Ali Javan serta koleganya William Bennett, Jr., dan Donald Herriott menemukan sebuah continuously operating helium-neon gas laser. 1960 Ditemukannya Operable laser Theodore Maiman, seorang fisikawan dan insinyur elektro di Hughes Research Laboratories, menemukan operable laser dengan menggunakan sebuah kristal batu rubi sintesis sebagai medium. 1961 Glass fiber demonstration Peneliti industri Elias Snitzer dan Will Hicks mendemontrasikan sinar laser yang diarahkan melalui serat gelas yang tipis. Inti serat gelas tersebut cukup kecil yang membuat cahaya hanya dapat melewati satu bagian saja tetapi banyak ilmuwan menyatakan bahwa serat tidak cocok untuk komunikasi karena rugi rugi cahaya yang terjadi karena melewati jarak yang sangat jauh. 1961 Penggunaan ruby laser untuk keperluan medis Penggunaan laser yang dihasilkan dari batu Rubi yang pertama, Charles Campbell of the Institute of Ophthalmology at Columbia- Presbyterian Medical Center dan Charles Koester of the American Optical Corporation menggunakan prototipe ruby laser photocoagulator untuk menghancurkan tumor pada retina pasien. 1962 Pengembangan Gallium arsenide laser Tiga group riset terkenal yaitu General Electric, IBM, dan MIT’s Lincoln Laboratory secara simultan mengembangkan gallium arsenide laser yang mengkonversikan energi listrk secara langsung ke dalam cahaya infra merah dan perkembangan selanjutnya digunakan untuk pengembangan CD dan DVD player serta penggunaan laser printer. 1963 Heterostructures Ahli fisika Herbert Kroemer mengajukan ide yaitu heterostructures, kombinasi dari lebih dari satu semikonduktor dalam layer-layer untuk mengurangi kebutuhan energi untuk laser dan membantu untuk dapat bekerja lebih efisien. Heterostructures ini nantinya akan digunakan pada telepon seluler dan peralatan elektronik lainnya.


1966 kertas Landmark pada optical fiber Charles Kao dan George Hockham yang melakukan penelitian di Standard Telecommunications Laboratories Inggris mempublikasikan landmark paper yang mendemontrasikan bahwa fiber optik dapat mentransmisikan sinar laser yang sangat sedikit rugi-ruginya jika gelas yang digunakan sangat murni. Dengan penemuan ini kemudian para peneliti lebih fokus pada bagaimana cara memurnikan bahan gelas. 1970 Fiber Optik yang memenuhi standar kemurnian. Ilmuwan Corning Glass Works yaitu Donald Keck, Peter Schultz, dan Robert Maurer melaporkan penemuan fiber optik yang memenuhi standar yang telah ditentukan oleh Kao dan Hockham. Gelas yang paling murni yang dibuat terdiri atas gabungan silika dalam tahap uap dan mampu mengurangi rugi-rugi cahaya kurang dari 20 decibels per kilometer. Pada 1972 tim ini menemukan gelas dengan rugi-rugi cahaya hanya 4 decibels per kilometer. Juga pada tahun 1970, Morton Panish dan Izuo Hayashi dari Bell Laboratories dengan tim Ioffe Physical Institute di Leningrad, mendemontrasikan semiconductor laser yang dapat dioperasikan pada temperatur ruang. Kedua penemuan tersebut merupakan terobosan dalam komersialisasi penggunaan fiber optik. 1973 Proses Chemical vapor deposition John MacChesney dan Paul O. Connor pada Bell Laboratories mengembangkan proses chemical vapor deposition process yang memanaskan uap kimia dan oksigen ke bentuk ultratransparent glass yang dapat diproduksi masal ke dalam fiber optik yang mempunyai rugi-rugi sangat kecil. 1975 Komersialisasi Pertama dari semiconductor laser Insinyur pada Laser Diode Labs mengembangkan semiconductor laser komersial pertama yang dapat dioperasikan pada suhu kamar. 1977 Perusahaan telepon menguji coba penggunaan fiber optic Perusahaan telepon memulai penggunaan fiber optik yang membawa lalu lintas telepon. GTE membuka jalur antara Long Beach dan Artesia, California, yang menggunakan transmisi light-emitting diode. Bell Labs mendirikan sambungan yang sama pada sistem telepon di Chicago dengan jarak 1,5 mil di bawah tanah yang menghubungkan 2 s switching station.

1980 Sambungan Fiber-optic telah ada di Kota kota besar di Amerika AT&T mengumumkan akan menginstal fiber-optic yang menghubungkan kota kota antara Boston dan Washington D.C. kemudian dua tahun kemudian MCI mengumumkan untuk melakukan hal yang sama. 1987 "Doped" fiber amplifiers David Payne di University of Southampton memperkenalkan fiber amplifiers yang dikotori oleh elemen erbium. optical amplifiers abru ini mampu menaikan sinyal cahaya tanpa harus mengkonversikan terlebih dahulu ke dalam energi listrik. 1988 Kabel Pertama Transatlantic Fiber-Optic Kabel Translantic yang pertama menggunakan fiber glass yang sangat transparan sehingga repeater hanya dibutuhkanb ketika sudah mencapai 40mil. 1991 Optical Amplifiers Emmanuel Desurvire di Bell Laboratories serta David Payne dan P. J. Mears dari University of Southampton mendemontrasikan optical amplifiers yang terintegrasi dengan kabel fiber optic tersebut. Keuntungannya adalah dapat membawa informasi 100 kali lebih cepat dari pada kabel electronic amplifier. 1996 optic fiber cable yang menggunakan optical amplifiers ditaruh di samudera pasifik TPC-5, sebuah optic fiber merupakan fiber optic pertama yang menggunakan optical amplifiers. Kabel ini melewati samudera pasifik mulai dari San Luis Obispo, California, ke Guam, Hawaii, dan Miyazaki, Japan, dan kembali ke Oregon coast dan mampu untuk menangani 320,000 panggilan telepon. 1997 Fiber Optic menghubungkan seluruh dunia Fiber Optic Link Around the Globe (FLAG) menjadi jaringan abel terpanjang di seluruh dunia yang menyediakan infrastruktur untuk generasi internet terbaru.

2. Generasi Perkembangan Serat Optik

Berdasarkan penggunaannya maka sistem komunikasi serat optik (SKSO) dibagi menjadi 4 tahap generasi yaitu :

1. Generasi pertama (mulai 1975) Sistem masih sederhana dan menjadi dasar bagi sistem generasi berikutnya, terdiri dari : alat encoding : mengubah input (misal suara) menjadi sinyal listrik transmitter : mengubah sinyal listrik menjadi sinyal gelombang, berupa LED dengan panjang gelombang 0,87 mm. serat silika : sebagai penghantar sinyal gelombang repeater : sebagai penguat gelombang yang melemah di perjalanan receiver : mengubah sinyal gelombang menjadi sinyal listrik, berupa fotodetektor alat decoding : mengubah sinyal listrik menjadi output (misal suara) Repeater bekerja melalui beberapa tahap, mula-mula ia mengubah sinyal gelombang yang sudah melemah menjadi sinyal listrik, kemudian diperkuat dan diubah kembali menjadi sinyal gelombang. Generasi pertama ini pada tahun 1978 dapat mencapai kapasitas transmisi sebesar 10 Gb.km/s.

2 Generasi kedua (mulai 1981)
Untuk mengurangi efek dispersi, ukuran teras serat diperkecil agar menjadi tipe mode tunggal. Indeks bias kulit dibuat sedekat-dekatnya dengan indeks bias teras. Dengan sendirinya transmitter juga diganti dengan diode laser, panjang gelombang yang dipancarkannya 1,3 mm. Dengan modifikasi ini generasi kedua mampu mencapai kapasitas transmisi 100 Gb.km/s, 10 kali lipat lebih besar daripada generasi pertama.

3. Generasi ketiga (mulai 1982)
Terjadi penyempurnaan pembuatan serat silika dan pembuatan chip diode laser berpanjang gelombang 1,55 mm. Kemurnian bahan silika ditingkatkan sehingga transparansinya dapat dibuat untuk panjang gelombang sekitar 1,2 mm sampai 1,6 mm. Penyempurnaan ini meningkatkan kapasitas transmisi menjadi beberapa ratus Gb.km/s.

4. Generasi keempat (mulai 1984)
Dimulainya riset dan pengembangan sistem koheren, modulasinya yang dipakai bukan modulasi intensitas melainkan modulasi frekuensi, sehingga sinyal yang sudah lemah intensitasnya masih dapat dideteksi. Maka jarak yang dapat ditempuh, juga kapasitas transmisinya, ikut membesar. Pada tahun 1984 kapasitasnya sudah dapat menyamai kapasitas sistem deteksi langsung. Sayang, generasi ini terhambat perkembangannya karena teknologi piranti sumber dan deteksi modulasi frekuensi masih jauh tertinggal. Tetapi tidak dapat disangkal bahwa sistem koheren ini punya potensi untuk maju pesat pada masa-masa yang akan datang.

5. Generasi kelima (mulai 1989)
Pada generasi ini dikembangkan suatu penguat optik yang menggantikan fungsi repeater pada generasi-generasi sebelumnya. Sebuah penguat optik terdiri dari sebuah diode laser InGaAsP (panjang gelombang 1,48 mm) dan sejumlah serat optik dengan doping erbium (Er) di terasnya. Pada saat serat ini disinari diode lasernya, atom-atom erbium di dalamnya akan tereksitasi dan membuat inversi populasi*, sehingga bila ada sinyal lemah masuk penguat dan lewat di dalam serat, atom-atom itu akan serentak mengadakan deeksitasi yang disebut emisi terangsang (stimulated emission) Einstein. Akibatnya sinyal yang sudah melemah akan diperkuat kembali oleh emisi ini dan diteruskan keluar penguat. Keunggulan penguat optik ini terhadap repeater adalah tidak terjadinya gangguan terhadap perjalanan sinyal gelombang, sinyal gelombang tidak perlu diubah jadi listrik dulu dan seterusnya seperti yang terjadi pada repeater. Dengan adanya penguat optik ini kapasitas transmisi melonjak hebat sekali. Pada awal pengembangannya hanya dicapai 400 Gb.km/s, tetapi setahun kemudian kapasitas transmisi sudah menembus harga 50 ribu Gb.km/s.

6. Generasi keenam
Pada tahun 1988 Linn F. Mollenauer memelopori sistem komunikasi soliton. Soliton adalah pulsa gelombang yang terdiri dari banyak komponen panjang gelombang. Komponen-komponennya memiliki panjang gelombang yang berbeda hanya sedikit, dan juga bervariasi dalam intensitasnya. Panjang soliton hanya 10-12 detik dan dapat dibagi menjadi beberapa komponen yang saling berdekatan, sehingga sinyal-sinyal yang berupa soliton merupakan informasi yang terdiri dari beberapa saluran sekaligus (wavelength division multiplexing). Eksperimen menunjukkan bahwa soliton minimal dapat membawa 5 saluran yang masing-masing membawa informasi dengan laju 5 Gb/s. Cacah saluran dapat dibuat menjadi dua kali lipat lebih banyak jika dibunakan multiplexing polarisasi, karena setiap saluran memiliki dua polarisasi yang berbeda. Kapasitas transmisi yang telah diuji mencapai 35 ribu Gb.km/s.

Cara kerja sistem soliton ini adalah efek Kerr, yaitu sinar-sinar yang panjang gelombangnya sama akan merambat dengan laju yang berbeda di dalam suatu bahan jika intensitasnya melebihi suatu harga batas. Efek ini kemudian digunakan untuk menetralisir efek dispersi, sehingga soliton tidak akan melebar pada waktu sampai di receiver. Hal ini sangat menguntungkan karena tingkat kesalahan yang ditimbulkannya amat kecil bahkan dapat diabaikan. Tampak bahwa penggabungan ciri beberapa generasi teknologi serat optik akan mampu menghasilkan suatu sistem komunikasi yang mendekati ideal, yaitu yang memiliki kapasitas transmisi yang sebesar-besarnya dengan tingkat kesalahan yang sekecil-kecilnya yang jelas, dunia komunikasi abad 21 mendatang tidak dapat dihindari lagi akan dirajai oleh teknologi serat optik.

Diposkan oleh ChRoS FRiAnLi di 09:45 0 CoMeNtAr

Penyambungan Kabel Serat Optike


Dalam jaringan kabel titik rawan gangguan terletak pada titik sambungan, karena pengaruh dari luar seperti masuknya air ke dalam closure. Dalam jangka waktu yang panjang 5 s/d 10 tahun akan menyebabkan turunnya karakteristik kabel, demikian juga akan menyebabkan rugi-rugi optik bertambah besar. Selain faktor air yang akan mempengaruhi kualitas jaringan juga faktor mekanis seperti tegangan yang berlebihan serta bending radius.

Tujuan penyambungan kabel optik secara umum adalah untuk menyambung dua buah kabel serat optik sesuai dengan prosedur yang benar sehingga mempunyai rugi-rugi sekecil mungkin.
Prosedur penyambungan kabel serat optik adalah sebagai berikut :
1. Penyambungan kabel serat optik harus sesuai prosedur
2. Penggunaan material dan peralatan harus benar
3. Pemasangan sarana sambung kecil kabel harus sesuai petunjuk pelaksanaan
4. Pengetesan harus dilakukan sesuai penyambungan
Kesemuannya harus dilaksanakan dengan baik dan benar untuk mendapatkan hasil yang optimal.
Proses penyambungan kabel serat optik meliputi :
1. Penyambungan kabel
2. Penyambungan serat
Pertama yang harus dilaksanakan adalah penanganan sarana sambung kabel lalu penanganan serat.
Penyambungan kabel dapat dilakukan dengan dua cara yaitu :
1. Penyambungan secara mekanik
2. Penyambungan secara heat shrink (panas kerut)
Jadi fungsi sarana sambung kabel (closure) adalah untuk menempatkan tray dan agar kedap terhadap air.
Teknik penyambungan serat optik dapat dilakukan dengan dua cara yaitu :
1. Secara mekanik
Penyambungan serat dengan sistem mekanik saat sekarang tidak digunakan lagi oleh PT Telkom karena akan menghasilkan loss yang cukup besar.

6.02.2008

:) -->
:D -->
:$ -->
:( -->
:p -->
;) -->
:k -->
:@ -->
:# -->
:x -->
:o -->
:L -->
:O -->
:r -->
:y -->
:t -->
:s -->
:~ -->
:v -->
:f -->
:d -->
:c -->
:z -->

2.12.2008

JENIS-JENIS RAM
Suatu ketika dahulu, iklan komputer yang tersiar di majalah begitu mudah difahami. Ini adalah kerana pilihan pengguna terhad kepada beberapa pemproses sahaja di samping beberapa pilihan lain yang berkaitan dengan komponen-komponen komputer. Apa yang dimaksudkan dengan komponen termasuklah pemacu cakera keras sehinggalah kepada kad bunyi. Bagaimanapun pilihan spesifikasi komputer pada hari ini agak memeningkan kepala kerana disertakan dengan pelbagai istilah yang mengelirukan. Tambahan pula ada dikalangan yang begitu sukar untuk memahami beberapa istilah tertentu yang menerangkan tentang spesifikasi komponen. Tidak terkecuali juga beberapa istilah yang digunakan untuk menerangkan tentang ingatan komputer atau Ingatan Akses-Rawak (Random-Access Memory @ RAM).
Sama ada disedari ataupun tidak, RAM tersebut terdiri daripada pelbagai jenis yang berlainan fungsi dan keupayaannya. Sehingga kini singkatan istilah RAM telah ditokok tambah dengan beberapa huruf tertentu dihadapannya sehingga muncul senarai singkatan seperti berikut ; DRAM, VRAM, SRAM, SDRAM serta WRAM. Singkatan sedemikian mungkin sudah cukup untuk mengelirukan orang apatah lagi dengan kemunculan pelbagai istilah yang terkini.
Dalam artikel ini akan dijelaskan beberapa kekeliruan tentang istilah, fungsi dan prestasi pelbagai bentuk RAM tersebut. Pertama sekali kita akan lihat secara ringkas bagaimana RAM berfungsi di samping hubungkaitnya dengan CPU (Unit Pemprosesan Pusat atau Pemproses). CPU komputer peribadi ; kemungkinan terdiri daripada jenis Intel 486, Pentium atau AMD, sebenarnya boleh diumpamakan sebagai jantung kepada komputer di mana data akan diproses dan arahan komputer ditafsirkan. Komponen yang berintegrasi dengan CPU pula adalah sistem ingatan utama yang lebih dikenali sebagai RAM. Kedua-dua komponen tersebut menjadi teras komputer anda, manakala komponen lain seperti pemacu cakera keras dan kad video, hanyalah pelengkap kepada aktiviti pusat. Tidak hairanlah jika ia hanya di kenali sebagai komponen kelengkapan.
CPU tersebut akan menjadikan RAM sebagai kawasan penyimpan data semasa, keputusan pengiraan dan pelbagai arahan program. Simpanan ini juga amat penting untuk melaksanakan beberapa tugasan yang diperlukan oleh sesuatu program yang sedang berjalan. Bagi menyimpan atau mengakses data dari simpanan data tersebut, CPU akan menjurus kepada alamat ingatan (memory address) bagi sesuatu maklumat yang diperlukan. Sementara bas (bus) alamat membolehkan CPU tersebut menghantar alamat kepada RAM, manakala bas data membolehkan pemindahan data sebenar kepada CPU. Istilah bas itu sendiri merujuk kepada perkaitan di antara CPU dan RAM peranti tersebut yang membolehkan mereka berkomunikasi. Kayu pengukur yang digunakan bagi menilai prestasi persembahan RAM ialah masa akses iaitu jumlah masa yang diambil oleh CPU untuk mengeluarkan arahan segera kepada RAM bagi membaca data tertentu, yang bermula daripada satu alamat sehinggalah CPU menerima data sebenar.
Lazimnya pada masa ini cip RAM memiliki kepantasan 60-ns, yang bermaksud ia mengambil masa selama 60 nanosaat (1 nanosaat bersamaan dengan 1 bilion saat) untuk melaksanakan satu pusingan perjalanan tersebut. Akses masa tersebut adalah lebih pantas berbanding cip 100 – 200-ns beberapa tahun yang lampau tetapi ia masih perlahan berbanding dengan masa akses yang ideal – masa akses bernilai sifar yang boleh direalisasikan sekiranya CPU tersebut menyimpan kesemua data. Bagi meningkatkan kepantasan capaian data, CPU terpaksa mengakses kepada ingatan cache (biasanya dirujuk sebagai cache sahaja). Pada kepantasan 20-ns atau lebih, ingatan cache adalah lebih pantas berbanding dengan ingatan utama, tetapi sistem PC kurang mengandungi ingatan cache berbanding ingatan utama RAM kerana harganya lebih mahal. Oleh itu hanya data yang mungkin diperlukan oleh CPU sahaja akan ditempatkan di dalamnya. Pemilihan data tersebut akan dikendalikan oleh pengawal cache (cache controller).
Cip ingatan hanya berfungsi apabila ia menyimpan cas-cas elektronik. Komponen ini diperbuat daripada kapasitor dan transistor, di mana kapasitor akan menyimpan cas manakala transistor pula akan menukarkan cas tersebut kepada fungsi ‘on’ atau ‘off’. Dengan kewujudan cip RAM, sistem PC boleh mengubah kedudukan ‘on’ atau ‘off’ cas tersebut. Berbeza dengan cip ROM (Read-Only Memory) di mana cas-cas tersebut akan berada pada kedudukan ‘on’ atau ‘off’ secara kekal.
Kesemua teknologi yang terdapat pada RAM akan menekankan kepada kepantasan dan pengeluarnya berusaha untuk menawarkan kepantasan yang lebih tanpa meningkatkan kos. Disebabkan teknologi CPU sudah semakin pantas maka teknologi ingatan juga harus seiringan di samping memerlukan jenis-jenis RAM yang berbeza. Keterangan secara ringkas mengenai istilah-istilah ingatan yang seterusnya adalah seperti berikut:
RAM (Random-Access Memory)
Ia merupakan istilah menyeluruh bagi semua ingatan yang boleh dibaca atau ditulis secara tidak sehala (non-linear). Bagaimanapun ia merujuk secara khusus kepada ingatan berasaskan cip apabila kesemua ingatan berasaskan cip sebelum ini dikatakan bersifat akses-rawak. RAM adalah agak berlainan dengan ROM, kerana komputer hanya boleh membaca pada ROM tetapi boleh membaca dan menulis pada RAM.
SIMM (Single In-line Memory Module) dan DIMM (Dual In-line Memory Module)
SIMM dan DIMM sebenarnya tidak merujuk kepada jenis-jenis memori tetapi merujuk kepada modul (papan litar yang berserta dengan cip) di mana RAM dipakejkan bersama. SIMM merupakan modul yang terdahulu dengan menawarkan laluan data sebanyak 32-bit. Disebabkan pemproses Pentium telah direkabentuk untuk menangani laluan data yang lebih lebar daripada itu, SIMM mesti digunakan secara berpasangan dengan papan utama Pentium. Bagaimanapun SIMM masih boleh digunakan secara tunggal teteapi hanya di atas papan utama yang berasaskan pemproses 486 atau pemproses yang lebih perlahan.
Manakala DIMM yang merupakan modul terbaru akan menawarkan laluan 64-bit agar menjadikan lebih sesuai untuk digunakan bersama pemproses Pentium dan pemproses terbaru yang lain seperti AMG dan Cyrix. Dari segi pembelian komponen ingatan, setiap unit DIMM terbukti berupaya untuk mengendalikan kerja-kerja yang boleh dilakukan oleh dua unit SIMM. Tambahan pula ia boleh digunakan secara tunggal pada papan utama Pentium. Dari segi jangka panjang pula DIMM adalah lebih ekonomik kerana ia tidak perlu menambah satu lagi DIMM pada sistem ingatan komputer.
DRAM (Dynamic RAM)
DRAM pula merupakan sejenis ingatan piawaian utama dalam komputer hari ini dan ia akan dirujuk apabila anda hendak memberitahu seseorang bahawa PC anda memiliki 32MB RAM. Di dalam DRAM, maklumat akan disimpan sebagai satu siri cas elektronik dalam sebuah kapasitor. Dalam setiap milisaat (milisecond) pengecasan secara elektronik kapasitor pada DRAM tersebut akan nyahcas (discharge) dan perlu disegarkan semula (refresh) untuk mengekalkan nilainya. Penyegaran secara berterusan ini telah dijadikan alasan untuk meletakkan istilah dynamic di hadapan susunan huruf RAM.
FPM RAM (Fast Page-Mode RAM)
Sebelum kemunculan EDO RAM, semua ingatan utama yang terdapat di dalam PC adalah dari jenis mod-halaman pantas (fast page-mode variety). Nama tersebut juga tidak begitu dikenali manakala jenisnya pula hanyalah satu. Bagaimanapun kemajuan teknologi telah berjaya mengurangkan masa akses bagi FPM RAM daripada 120-ns (nanosaat) kepada masa akses sekarang iaitu 60-ns. Bagaimanapun pemproses Pentium hanya mengiktiraf bas berkepantasan 66 Mhz kerana bas tersebut lebih pantas keupayaannya berbanding dengan keupayaan FPM RAM. Dengan kepantasan 60-ns akan membolehkan modul RAM melaksana akses halaman rawak (di mana halaman dirujuk sebagai satu

2.11.2008

komputer (hardware) adalah semua bagian fisik komputer, dan dibedakan dengan data yang berada di dalamnya atau yang beroperasi di dalamnya, dan dibedakan dengan perangkat lunak (software) yang menyediakan instruksi untuk perangkat keras dalam menyelesaikan tugasnya.
Batasan antara perangkat keras dan perangkat lunak akan sedikit buram kalau kita berbicara mengenai firmware, karena firmware ini adalah perangkat lunak yang "dibuat" ke dalam perangkat keras. Firmware ini merupakan wilayah dari bidang ilmu komputer dan teknik komputer, yang jarang dikenal oleh pengguna umum.
Komputer pada umumnya adalah komputer pribadi, (PC) dalam bentuk desktop atau menara kotak yang terdiri dari bagian berikut:
Papan sistem/papan induk yang merupakan tempat CPU, memori dan bagian lainnya, dan memiliki slot untuk kartu tambahan.
RAM - tempat penyimpanan data jangka pendek, sehingga komputer tidak perlu selalu mengakses hard disk untuk mencari data. Jumlah RAM yang lebih besar akan membantu kecepatan PC
Buses:
Bus PCI
Bus ISA
USB
AGP
ROM (Read Only Memory) di mana firmware diletakkan
CPU (Central Processing Unit) sebagai otak dan bagian utama komputer
Power supply - sebuah kotak yang merupakan tempat transformer, kontrol voltase dan kipas
Pengontrol penyimpanan, dari jenis IDE, SCSI atau lainnya, yang mengontrol hard disk, Floppy disk, CD-ROM dan drive lainnya; kontroler ini terletak di papan induk (atas-papan) atau di kartu tambahan
Pengontrol penampilan video yang memproduksi output untuk komputer display
Pengontrol komputer bus (paralel, serial, USB, Firewire) untuk menyambung komputer dengan alat tambahan luar lainnya seperti printer atau scanner
Beberapa jenis penyimpanan komputer:
CD - tipe paling umum media yang dapat dilepas, murah tapi mudah rusak.
CD-ROM
CD-RW
CD-R
DVD
DVD-ROM
DVD-RW
DVD-R
Floppy disk
Penyimpanan dalam - menyimpan data dalam komputer untuk penggunaan jangka panjang.
Hard disk - untuk penyimpanan data jangka panjang
Disk array controller
Kartu suara - menerjemahkan signal dari papan sistem ke bahasa yang dapat dimengerti oleh speaker, dan memiliki terminal untuk mencolok kabel suara speaker.
Jaringan komputer - untuk menghubungkan komputer ke internet dan/atau komputer lainnya.
Modem - untuk koneksi tekan-tombol.
Kartu network - untuk internet DSL/kabel, dan/atau menghubungkan ke komputer lain.
Alat lainnya.
Sebagai tambahan, perangkat keras dapat memasukan komponen luar lainnya. Di bawah ini merupakan komponen standar atau yang umum digunakan.
Input
Keyboard
Alat penunjuk
Mouse
Trackball
Joystick
Gamepad
Scanner gambar
Webcam
Tablet Grafis
Output
Printer
Speaker
Monitor
Jaringan/Networking
Modem
kartu network